1		comparison	son M1 starts to manipulate expression e.g. $3y = 9x - 6$ or $3y = 9x - 5$	
A1 gives equation(s) which can be used to show that the gradients of the tv		gives equation(s) which can be used to show that the gradients of the two lines are the same e.g. y		
				=3x-5/3

2	y = -2x + 21	P1 P1	shows evidence of understanding that AC is perpendicular to DB , or states the gradient of DB as 0.5 oe shows a process to find the gradient of a perp. line e.g. use of $-\frac{1}{m}$ or	
			states $y = -2x + c$ or states the gradient of AC as -2	
		P1	(dep on P2) for sub. of $x = 5$, $y = 11$ into $y = mx + c$ where m is their found gradient for AC.	
		A1	oe	

3	$y = \frac{-3}{\sqrt{7}}x + \frac{8}{\sqrt{7}}$	M1	for method to find gradient of <i>OP</i> , eg $\frac{\sqrt{7}}{2} \div \frac{3}{2} \left(= \frac{\sqrt{7}}{3} \text{ or } 0.88 \dots \right)$ oe
		M1	(dep) for method to find gradient of tangent, m , eg. $\frac{\sqrt{7}}{2} \times m = -1 \ \left(m = \frac{-3}{\sqrt{7}} \text{ or } -1.13\right)$
		A1	for $y - \frac{\sqrt{7}}{2} = \frac{-3}{\sqrt{7}}(x - \frac{3}{2})$ or $y = \frac{-3\sqrt{7}}{7}x + \frac{8\sqrt{7}}{7}$ oe or $y - 1.32 = -1.13(x - 1.5)$

4	y = 2x + 36	P1	starts process, eg by rearranging to find gradient, eg $y = 6 - \frac{x}{2}$ or $\frac{-1}{2}$ or positions of B and E
		P1	complete process to find position of A or uses $\frac{-1}{m}$ to find the gradient of M
		P1	complete process to find equation of ${f M}$
		A1	y = 2x + 36 oe

5	$y = -\frac{3}{4}x - \frac{11}{4}$	M1	for identifying gradient of $\frac{4}{3}$	Ignore constant term
		M1	for beginning a method to find the gradient of the perpendicular line eg $\frac{4}{3} \times m = -1$ or identifies gradient of perpendicular line as $-\frac{3}{4}$	Can ft providing gradient is clearly stated
		A1	for $y = -\frac{3}{4}x - \frac{11}{4}$ or any equivalent equation	$4y + 3x = -11$ $y + 5 = -\frac{3}{4}(x - 3)$

6	9.75	P1	process to find the gradient of L $\left(=-\frac{3}{2}\right)$	
		P1	process to find the gradient of the perpendicular line M	
			eg use of $-\frac{1}{m}$ or states gradient as $\frac{2}{3}$	
			$\mathbf{or} \ y = \frac{2}{3}x + c$	
		B1	(indep) gives y coordinate of $B = 8.5$ oe	Could be indicated other ways, eg 8.5 on the y axis of a diagram
		P1	(dep P2) process to find x coordinate of C (= 3) or y coordinate of C (= 4) eg the first stage of solving equations or using elimination by substitution, to find a coordinate of C .	ft their linear equation for M with L; allow some error in manipulation of these linear equations as long as the overall process is correct.
		A1	9.75 oe	Award 0 marks for a correct answer with no supportive working.

7	$y = -\frac{1}{3}x + 8$	M1	for a method for finding the gradient of L_2 eg use of $-\frac{1}{m}$ or $-\frac{1}{3}$	
		M1	(dep) for substitution of (9, 5) into $y = "-\frac{1}{3}"x + c$	
		A1	for $y = -\frac{1}{3}x + 8$ oe	$y-5 = -\frac{1}{3}(x-9)$ gets M2A1